Back to the General Solution for Simple Drag Parametrizations

3. Linear (N=1 case) Drag

The linear drag case has C = K1/m and a = Vmax = mg/K1, so for free-fall from rest the integration problem is just

\begin{displaymath}
\int_{0}^{v} \frac{dv}{a - v}
\; = \; C t .
\end{displaymath} (6)

With x = a - v, which is always positive, and dx = -dv, we identify the left side as a simple log integral:

\begin{displaymath}
\int_{0}^{v} \frac{dv}{a - v} \; = \; - \log(a-v) \biggr\vert_{0}^{v}
\end{displaymath}

which gives

\begin{displaymath}
- \left[ \log(a-v) - \log(a) \right] \; = \; - \log\left(\frac{a-v}{a}\right)
\end{displaymath}

so that Eq. (6) becomes

\begin{displaymath}
-Ct \; = \; \log\left(1 - \frac{v}{a}\right) .
\end{displaymath}

Exponentiation of both sides gives

\begin{displaymath}
e^{-Ct} \; = \; 1 - \frac{v}{a}
\end{displaymath}

so the solution for v(t) is
\begin{displaymath}
v(t) \; = \; V_{\rm max} \left[ 1 - e^{-Ct} \right]
\end{displaymath} (7)

where Vmax = mg/K1 and C is the inverse of the time constant for the exponential approach to the terminal velocity Vmax. (Define T1 = m/K1 = 1/C to be that time constant.)

Similarly, if we assume that the initial position is y(0) = 0 and remember that the positive direction for y is down, we can integrate the velocity to get the position as a function of time:

\begin{displaymath}
y(t) \; = \; V_{\rm max} t \; - \;
\left( \frac{V_{\rm max}}{C} \right) \left( 1 - e^{-Ct} \right)
\end{displaymath} (8)

This means that you would solve

\begin{displaymath}
H \; = \; V_{\rm max} T \; - \;
\left( \frac{V_{\rm max}}{C} \right) \left( 1 - e^{-CT} \right)
\end{displaymath}

for T to find out how long it takes for the object to fall a distance H.

The validity of these solutions can be verified by explicit differentiation with respect to t and is left as an exercise.

Next, Quadratic (N=2 case) drag.


Jim Carr
2000-02-17